Login

GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]


Flowers' genome duplication contributes to their spectacular diversity

The evolution of plants has been punctuated by major innovations, none more striking among living plants than the flower.

The discovery that all flowering plants underwent a doubling of their genome at some point during their evolution has led to speculation that this duplication event triggered the diversification of this spectacular lineage, but the timing of this event has remained difficult to pin down.

Genome duplications provide a second copy of every single gene on which selection can act, potentially leading to new forms and greater diversity.

This process leads to the formation of large families of genes -- we can examine the history of duplication in gene families in the genomes of all major groups of plants and then look to the rate of change in their DNA sequences in relation to the evidence presented by the plant fossil record. This provides us with a 'molecular clock', with which we can date evolutionary events.

James Clark from the University of Bristol's School of Earth Sciences, led the research.

He said: "We have found that, based on the signal of these gene families, the timing of this duplication does not support a direct role as a 'trigger' for flowering plant evolution.

"Rather, the duplication seems to have occurred at least 50 million years prior to the diversification of flowering plants.

"These results suggest that if the duplication had any impact on flowering plant evolution, then it may have been more of a 'long fuse' that may have paved the way for later innovations and diversification, rather than directly causing them."

Genome duplication undoubtedly had some role to play in the evolution of plants, and these findings highlight the need to carefully consider exactly when each duplication occurred.

Professor Philip Donoghue, also from the University of Bristol's School of Earth Sciences, co-authored the research.

He said: "Genome duplications are rare events, but they have often occurred at major turning points in evolutionary history, including in our own deep evolutionary history.

"Our approach will allow us and other scientists to get to the bottom of the relationship between genome duplication and evolutionary success."

Read the paper: Constraining the timing of whole genome duplication in plant evolutionary history.

Article source: University of Bristol.

Image credit: University of Bristol

News

High CO2 levels cause plants to thicken their leaves, which could worsen climate change effects, researchers say

Plant scientists have observed that when levels of carbon dioxide in the atmosphere rise, most plants do something unusual: They thicken their leaves.


Designing a more productive corn able to cope with future climates

An international research team has found they can increase corn productivity by targeting the enzyme in charge of capturing CO2 from the atmosphere.


‘Turbocharging’ photosynthesis increases plant biomass

Scientists from the Boyce Thompson Institute (BTI) and Cornell have boosted a carbon-craving enzyme called RuBisCO to turbocharge photosynthesis in corn. The discovery promises to be a key step in improving agricultural efficiency and yield, according to their esearch published in Nature Plants