Login

GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]


Fighting back: New study reveals unprecedented details of plant-pathogen co-evolution

The co-evolution of plant - pathogen interactions has been revealed in unprecedented detail in a study of one of the world's deadliest crop killers. This is the rice blast pathogen, which destroys enough food to feed more than 60 million people every year - almost the population of the UK.

Plants, like animals, have an innate immune system that includes receptors to detect the presence of pathogens, and upon activation resist infection. Researchers at the John Innes Centre have unravelled how rice plants have evolved bespoke defence solutions against different variants of the rice blast pathogen.

The team, led by Professor Mark Banfield, focussed on an immune receptor in rice to show how it has evolved to recognise multiple versions of a pathogen effector protein, a molecule used by the fungus to promote disease, in a sort-of "molecular handshake". This recognition leads to the disease being stopped in its tracks.

The team behind this work included PhD student Juan Carlos De la Concepcion and postdoctoral researcher Marina Franceschetti, as well as colleagues from The Sainsbury Laboratory (Norwich) and Japan. The increased understanding of the molecular mechanisms behind plant immunity mean this multidisciplinary team are nearer to engineering disease resistance against a range of crop pathogens.

"In addition to understanding how natural selection has driven the emergence of new receptor functions, we also highlight the potential for molecular engineering of new receptors with improved activities," said Professor Banfield. "While further work is required to translate our findings into real world solutions to plant disease, our study brings us one step closer to this goal," he added. This study represents one of the most detailed structure/function analyses of pathogen recognition in plants, to date.

Read the paper: Polymorphic residues in rice NLRs expand binding and response to effectors of the blast pathogen.

Article source: John Innes Centre.

Image credit: John Innes Centre

News

Scientists identify mechanism that controls leaf growth and shape

In autumn, it is not only the colours that catch the eye, but also the different sizes and shapes of leaves. But what makes leaves of different plants differ so much in their shapes? Scientists at the Max Planck Institute for Plant Breeding Research in Cologne have now discovered how a protein called LMI1 can control leaf growth and shape.


Scientists find great diversity, novel molecules in microbiome of tree roots

Researchers with the Department of Energy’s Oak Ridge National Laboratory have discovered that communities of microbes living in and around poplar tree roots are ten times more diverse than the human microbiome and produce a cornucopia of novel molecules that could be useful as antibiotics, anti-cancer drugs, or for agricultural applications.


In New Phytologist: Plants find ways to survive no matter the terrain

Researchers from Royal Holloway, University of London, together with the University of Osnabrück in Germany, have discovered that a fascinating plant employs two mechanisms to survive, no matter where it grows.