Login

GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]


Extreme weather conditions and climate change account for 40% of global wheat production variability

European Commission, Joint Research Centre (JRC) scientists have proposed a new approach for identifying the impacts of climate change and extreme weather on the variability of global and regional wheat production. The study analysed the effect of heat and water anomalies on crop losses over a 30-year period.

JRC scientists studied the relative importance of heat stress and drought on wheat yields between 1980 and 2010. They developed a new Combined Stress Index in order to better understand the effects of concurrent heat and water stress events.

The study was published in Environmental Research Letters earlier this month. It finds that heat stress concurrent with drought or water excess can explain about 40% of the changes in wheat yields from one year to another.

One finding is that in contrast to the common perception, water excess affects wheat production more than drought in several countries. Excessive precipitation and greater cloud cover, especially during sensitive development stages of the crop, are major contributors to reduced yields, as they help pests and disease proliferate and make it harder for the plants to get the oxygen and light they need.

In 2010, wheat contributed to 20% of all dietary calories worldwide. It therefore has a major role in food security worldwide, some countries being particular reliant on it . As climate change is increasing the duration, frequency and severity of extreme weather events, it has become increasingly urgent to identify their effects and provide early warnings, in order to ensure market stability and global food security.

This study helps to better understand the role of weather factors in wheat production and global yield anomalies. It shows, for the first time, the effect of individual extreme events and their impacts on particular development stages of the crop (for example, the effect of drought during key development periods such as flowering and grain-filling).

Compared to previous approaches, the Combined Stress Index has the advantage of being able to calculate the effect of single weather anomalies on total crop output at global and regional levels. Moreover, it offers a simple and practical tool to compute yield anomalies using seasonal, climate forecasts and projections, thereby allowing better adaptation studies and mitigation strategies to be established.

The model explicitly accounts for the effects of temperature and soil moisture changes (positive and negative) on global and regional wheat production fluctuations.

A specific case study was carried out at subnational level in France, where wheat was found to be more sensitive to overly wet conditions. In other countries, heat stress and drought are the most important predictors of crop losses. For instance, in Mediterranean countries, drought has a bigger detrimental effect on wheat yields than heat stress.

Read the paper: Wheat yield loss attributable to heat waves, drought and water excess at the global, national and subnational scales.

Article source: https://www.sciencedaily.com/releases/2017/07/170704094104.htm.

News

Disease-resistant apples perform better than old favorites

You may not find them in the produce aisle yet, but it's only a matter of time before new disease-resistant apple cultivars overtake favorites like Honeycrisp in popularity, according to a University of Illinois apple expert.


Microbiome transplants provide disease resistance in critically endangered Hawaiian plant

Transplanting wild microbes from healthy related plants can make a native Hawaiian plant healthier and likelier to survive in wild according to new research from The Amend Laboratory in the University of Hawai'i at Mānoa (UHM) Botany Department and the O'ahu Army Natural Resources Program (OANRP). Professor Anthony Amend and postdoctoral researcher Geoff Zahn used microbes to restore the health of a critically endangered Hawaiian plant that, until now, had been driven to extinction in the wild and only survived in managed greenhouses under heavy doses of fungicide.


Sun's role in mitigating fungal disease of mango fruit

Mango fruits play host to some economically damaging fungal diseases, especially during ripening and storage; but mango growers and suppliers have a new ray of hope...in the form of sunlight.