Login

GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]


Effects of soil and drainage on the savanna vegetation in the northern Brazilian Amazonia

It is a well-known fact that environmental factors such as soil texture and drainage determine to a very large degree the vegetation appearance, richness and composition at any site. However, there has been little research on how these variables influence the flora in the marvellous savannas -- large open areas characterised by a complex and unique network of natural resources and life forms.

Consequently, a Brazilian research team, led by Dr. Maria Aparecida de Moura Ara├║jo, Universidade Federal de Roraima, investigated the hydro-edaphic conditions in the savanna areas in the northern Brazilian Amazonia. Their study, complete with an openly available and ready for re-use dataset, is published in the open access Biodiversity Data Journal.

In the course of the Program for Biodiversity Research, managed by the Brazilian government, the scientists sampled 20 permanent plots in two savanna areas in the state of Roraima, located in the northern of the Brazilian Amazon. As a result, the team reports a total of 128 plant species classified into 34 families from three savanna habitats with different levels of hydro-edaphic restrictions.

Amongst the various factors playing a role in the soil characteristics of the area, are the tectonic events and past climatic fluctuations which have occurred in the most recent period of the Cenozoic era. Paleo, as well as modern fires are likely to be other culprits for the specific conditions.

In conclusion, the authors suggest that the most restrictive savanna habitats - the wet grasslands, represent the home to less structurally complex plants, compared to the well-drained shrubby localities.

"The present study highlights the environmental heterogeneity and the biological importance of Roraima's savanna regarding the conservation of natural resources from the Amazon," say the scientists.

"In addition, it points out the need for greater investment in floristic inventories associated with greater diversification of sites, since this entire ecosystem has been rapidly modified by agribusiness."

Read the paper: Hydro-edaphic conditions defining richness and species composition in savanna areas of the northern Brazilian Amazonia.

Article source: Pensoft Publishers.

Image credit: Reinaldo Imbrozio Barbosa

News

New research calculates capacity of North American forests to sequester carbon

Researchers have calculated the capacity of North American forests to sequester carbon in a detailed analysis that for the first time integrates the effects of two key factors: the natural process of forest growth and regeneration, and climate changes that are likely to alter the growth process over the next 60 years.


Climate change-induced march of treelines halted by unsuitable soils

New research from the University of Guelph is dispelling a commonly held assumption about climate change and its impact on forests in Canada and abroad.


Rice plants evolve to adapt to flooding

Although water is essential for plant growth, excessive amounts can waterlog and kill a plant. In South and Southeast Asia, where periodic flooding occurs during the rainy season, the water depth can reach several meters for many months.