Login

GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]


Ecuador: Deforestation destroys more dry forest than climate change

Tropical forests all over the world are at risk. Two of the main threats are the deforestation for arable land and climate change. Scientists from the Technical University of Munich (TUM) and the Thünen-Institute compared the losses due to deforestation with those that would result in extreme climate change scenarios in Ecuador. Although global warming is likely to change the distribution of species, deforestation will result in the loss of more dry forests than predicted by climate change damage.

A large proportion of Ecuador's rare dry forests are located in the southwest of the country, in the Tumbes-Chocó-Magdalena region. These forests provide not only wood and non-wood products, but also important ecosystem services that regulate the water balance and protect the soil from erosion. However, the area suffers a high loss of habitat due to deforestation for more arable and pasture land. This exacerbates the negative effects of climate change, such as temperature increases.

In cooperation with scientists from the Thünen-Institut and the Ecuadorian Universidad Técnica Particular de Loja, a team from TUM compared the predicted loss of area of tree species caused by deforestation on the one hand and by predicted forest losses in an extreme climate change scenario on the other. We have evaluated 660 data sets on the occurrence of 17 characteristic species of dry forests in the south of Ecuador," explain first author Carlos Manchego and Patrick Hildebrandt from the Chair of Silviculture at TUM - "in order to estimate both potential threats, we have compared the forecast annual rates of losses. However, it is important that the results are not transferable to other tree species in other regions."

Losses from conversions in the period 2008 to 2014, especially for agricultural and pasture land, averaged 71 square kilometres per year for all species in the study area. The predicted loss of species area in the climate change scenario was only 21 square kilometres per year.

Recommendations for more effective forest protection and sustainable land use

One unexpected outcome was the different displacement directions of tree species due to climate change. While some species migrate to the north, other species find their future distribution focus more to the south. This leads to a trend towards mixing tree species with hitherto unknown effects on the functionality and stability of future forest communities," says Hildebrandt. "At the same time, grubbing-up starts in the higher altitudes, because it's easier to grow something like corn there."

According to Hildebrandt, it is important for efficient planning, the implementation of protective measures and sustainable land use to prioritise the measures according to such threats and weak points. A distinction must be made between the potential threats posed by climate change and deforestation. With the study in PLOS One, we wanted to provide a scientific frame of reference to identify the lesser evil and make targeted recommendations".

However, regardless of the conservation strategy, these objectives required the participation of both private landowners and local communities.

Read the paper: Climate change versus deforestation: Implications for tree species distribution in the dry forests of southern Ecuador.

Article source: Technical University of Munich .

Image credit: P. Hildebrandt/ TUM

News

Dating the ancient Minoan eruption of Thera using tree rings

New analyses that use tree rings could settle the long-standing debate about when the volcano Thera erupted by resolving discrepancies between archeological and radiocarbon methods of dating the eruption, according to new University of Arizona-led research.


How do plants rest photosynthetic activity at night?

Photosynthesis, the process by which plants generate food, is a powerful piece of molecular machinery that needs sunlight to run. The proteins involved in photosynthesis need to be 'on' when they have the sunlight they need to function, but need to idle, like the engine of a car at a traffic light, in the dark, when photosynthesis is not possible. They do this by a process called 'redox regulation'--the activation and deactivation of proteins via changes in their redox (reduction/oxidation) states. What happens in light is well understood: the ferredoxin-thioredoxin reductase (FTR)/thioredoxin (Trx) pathway is responsible for the reduction process, which activates the photosynthetic pathway. However, scientists have long been in the dark about what happens when light is not available, and how plants reset photosynthetic proteins to be ready to function when light is resumed.


VOX pops cereal challenge

A plant virus with a simple genome promises to help crop scientists understand traits and diseases in wheat and maize more quickly and easily than existing techniques and, as its full potential is tapped, to work across a range of different plant species.