Login

GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]


Ecuador: Deforestation destroys more dry forest than climate change

Tropical forests all over the world are at risk. Two of the main threats are the deforestation for arable land and climate change. Scientists from the Technical University of Munich (TUM) and the Thünen-Institute compared the losses due to deforestation with those that would result in extreme climate change scenarios in Ecuador. Although global warming is likely to change the distribution of species, deforestation will result in the loss of more dry forests than predicted by climate change damage.

A large proportion of Ecuador's rare dry forests are located in the southwest of the country, in the Tumbes-Chocó-Magdalena region. These forests provide not only wood and non-wood products, but also important ecosystem services that regulate the water balance and protect the soil from erosion. However, the area suffers a high loss of habitat due to deforestation for more arable and pasture land. This exacerbates the negative effects of climate change, such as temperature increases.

In cooperation with scientists from the Thünen-Institut and the Ecuadorian Universidad Técnica Particular de Loja, a team from TUM compared the predicted loss of area of tree species caused by deforestation on the one hand and by predicted forest losses in an extreme climate change scenario on the other. We have evaluated 660 data sets on the occurrence of 17 characteristic species of dry forests in the south of Ecuador," explain first author Carlos Manchego and Patrick Hildebrandt from the Chair of Silviculture at TUM - "in order to estimate both potential threats, we have compared the forecast annual rates of losses. However, it is important that the results are not transferable to other tree species in other regions."

Losses from conversions in the period 2008 to 2014, especially for agricultural and pasture land, averaged 71 square kilometres per year for all species in the study area. The predicted loss of species area in the climate change scenario was only 21 square kilometres per year.

Recommendations for more effective forest protection and sustainable land use

One unexpected outcome was the different displacement directions of tree species due to climate change. While some species migrate to the north, other species find their future distribution focus more to the south. This leads to a trend towards mixing tree species with hitherto unknown effects on the functionality and stability of future forest communities," says Hildebrandt. "At the same time, grubbing-up starts in the higher altitudes, because it's easier to grow something like corn there."

According to Hildebrandt, it is important for efficient planning, the implementation of protective measures and sustainable land use to prioritise the measures according to such threats and weak points. A distinction must be made between the potential threats posed by climate change and deforestation. With the study in PLOS One, we wanted to provide a scientific frame of reference to identify the lesser evil and make targeted recommendations".

However, regardless of the conservation strategy, these objectives required the participation of both private landowners and local communities.

Read the paper: Climate change versus deforestation: Implications for tree species distribution in the dry forests of southern Ecuador.

Article source: Technical University of Munich .

Image credit: P. Hildebrandt/ TUM

News

Scientists identify mechanism that controls leaf growth and shape

In autumn, it is not only the colours that catch the eye, but also the different sizes and shapes of leaves. But what makes leaves of different plants differ so much in their shapes? Scientists at the Max Planck Institute for Plant Breeding Research in Cologne have now discovered how a protein called LMI1 can control leaf growth and shape.


Scientists find great diversity, novel molecules in microbiome of tree roots

Researchers with the Department of Energy’s Oak Ridge National Laboratory have discovered that communities of microbes living in and around poplar tree roots are ten times more diverse than the human microbiome and produce a cornucopia of novel molecules that could be useful as antibiotics, anti-cancer drugs, or for agricultural applications.


In New Phytologist: Plants find ways to survive no matter the terrain

Researchers from Royal Holloway, University of London, together with the University of Osnabrück in Germany, have discovered that a fascinating plant employs two mechanisms to survive, no matter where it grows.