GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]

Dual control: Plant peptide hormone generates distinct cell structures for water flow

Researchers have found that a peptide hormone regulates two different cell division processes that generate centrally important structures for the flow of water through plants.

Water flow through plants is critical to our food supply: without proper water flow, plants cannot carry out photosynthesis, or grow or reliably produce flowers, fruit or seeds. Water flows within specialized structures from the roots, through the stem to the leaves, where its evaporation is regulated by microscopic pores called stomata. All the water-conducting structures are produced by tightly controlled developmental sequences: cells must divide to produce the necessary cell types in the correct place at the right time. But many details of how these complex developmental processes are controlled remain unclear.

Osaka University researchers, in collaboration with laboratories in China, Germany, and Japan, have revealed a key piece in the jigsaw of mechanisms that control plant cell development. The team found that a peptide hormone is the signaling molecule that controls the development of two completely different types of cells, both of which are involved in creating the cellular structures for water flow. The hormone does this by binding to two distinct receptors in the two locations. The team recently published their findings in Nature Plants.

The team used the small plant Arabidopsis (Thale cress), which grows and reproduces rapidly and has a smaller, simpler genome than most crop plants. Their research methods included genetic modification, studying the plant’s anatomy by microscopy using fluorescent dyes, and producing mutant plants using the latest gene editing technologies.

The researchers showed that the genes encoding the peptide hormone CLE9/10 are active in cells that lead to the development of stomata in the leaf and also in cells that are precursors of water-conducting vessels (the xylem) in the root.

“In the primordial cells in leaves, binding of CLE9/10 to a protein receptor controls the number of stomatal pores,” said lead author Pingping Qian. “But in the roots, it binds to a different protein receptor, and there it controls the production of xylem vessels.”

As well as identifying these two different receptors, the study also revealed that a co-receptor protein is involved in the leaf signaling system.

“In animals, there are examples of signaling molecules that are perceived by multiple receptors,” says corresponding author Tatsuo Kakimoto. “This study shows that the same types of signaling systems operate in plants. It is interesting that the two developmental processes, involving distinct receptors in different parts of the plant, generate completely different structures that are both essential for water flow. These results have implications for understanding how multiple processes in plant development are coordinated.”

Read the paper: Nature Plants

Article source: Osaka University

Image credit: Osaka University


Scientists transform tobacco info factory for high-value proteins

For thousands of years, plants have produced food for humans, but with genetic tweaks, they can also manufacture proteins like Ebola vaccines, antibodies to combat a range of conditions, and now, cellulase that is used in food processing and to break down crop waste to create biofuel. In Nature Plants, a team from Cornell University and the University of Illinois announced that crops can cheaply manufacture proteins inside their cellular power plants called chloroplasts—allowing the crops to be grown widely in fields rather than restrictive greenhouses—with no cost to yield.

Climate change could affect symbiotic relationships between microorganisms and trees

Some fungi and bacteria live in close association, or symbiosis, with tree roots in forest soil to obtain mutual benefits. The microorganisms help trees access water and nutrients from the atmosphere or soil, sequester carbon, and withstand the effects of climate change. In exchange, they receive carbohydrates, which are essential to their development and are produced by the trees during photosynthesis.

Aggressive, non-native wetland plants squelch species richness more than dominant natives do

Dominant, non-native plants reduce wetland biodiversity and abundance more than native plants do, researchers report in the journal Ecology Letters. Even native plants that dominate wetland landscapes play better with others, the team found.