Login

GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]


Dodder genome sequencing sheds light on evolution of plant parasitism

Most plants absorb sunlight and CO2 with their leaves, take up water and minerals from the soil through roots, and are fully autotrophic. However, parasitic plants are a special class of plants that extract water and nutrients from other plants.

The origin and evolution of plant parasitism as well as the specific physiology and ecology of parasitic plants are very interesting topics and much remains to be studied.

Dodders (Cuscuta spp., Convolvulaceae) are globally distributed holoparasites (i.e., they conduct no or very little photosynthesis), and they are root- and leafless. In recent years, dodders have become an important model for studying parasitic plants (Figure).

To gain insight into the evolution of dodders, and provide important resources for studying the physiology and ecology of parasitic plants, the laboratory of Dr. WU Jianqiang from the Kunming Institute of Botany, Chinese Academy of Sciences, combined PacBio sequencing and Illumina transcriptome sequencing technology to obtain a high-quality genome of the dodder Cuscuta australis.

WU's lab further performed comparative genomic and molecular evolutionary analyses on the C. australis genome. The researchers detected an intriguing pattern of genome evolution in this parasite.

Using genome-wide phylogenetic analysis and synteny information, they found that the ancestor of Cuscuta split from the common ancestor of Cuscuta and Ipomoea 750 million years ago and the common ancestor experienced a genome triplication event. The Cuscuta genome then rapidly evolved and many genes were lost during evolution.

The scientists developed a strict and precise bioinformatic pipeline to screen for the lost genes in the C. australis genome. They found that about 11.7% of the well-conserved genes in autotrophic plants do not exist in the C. australis genome, and many of the missing genes are important for photosynthesis, functions of root and leaf, resistance to environmental stresses, and regulation of transcription.

Interestingly, several genes critical for flowering time control are also missing, such as FLC, FRI, SVP, AGL17, and CO. The gene loss is correlated with the major body plan changes in the dodder.

The scientists also studied possible genes related to the evolution of the haustorium, a parasite-specific organ. They found that about 1/3 of highly expressed genes in the haustorium are also strongly expressed in the roots of autotrophic plants.

Evidence from transcriptomic data, positive selection, and gene families with expanded members indicate that a number of genes are possibly involved in haustorium formation, including a pectin esterase, a serine carboxypeptidase, and transporters, as well as novel genes with unknown functions.

Read the paper: Large-scale gene losses underlie the genome evolution of parasitic plant Cuscuta australis.

Article source: Kunming Institute of Botany.

Image credit: XU Yuxing

News

A small number of crops are dominating globally. And that’s bad news for sustainable agriculture

A new University of Toronto study suggests that globally we're growing more of the same kinds of crops, and this presents major challenges for agricultural sustainability on a global scale.


How plants cope with iron deficiency

Iron is an essential nutrient for plants, animals and also for humans. It is needed for a diverse range of metabolic processes, for example for photosynthesis and for respiration. If a person is lacking iron, this leads to a major negative impact on health. Millions of people around the globe suffer from iron deficiency each year. Iron enters the human food chain through plants, either directly or indirectly. Although there are large quantities of iron in the soil in principle, plants may become iron-deficient because of the specific composition of the soil. Additionally, a plant's iron requirements vary throughout its development depending on external circumstances.


Biotechnology to the rescue of Brussels sprouts

An international team has identified the genes that make these plants resistant to the pathogen that attacks crops belonging to the cabbage family all over the world.