Login

GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]


Diverse landscapes are more productive and adapt better to climate change

The dramatic, worldwide loss of biodiversity is one of today's greatest environmental problems. The loss of species diversity affects important ecosystems on which humans depend. Previous research predominantly addressed short-term effects of biodiversity in small experimental plots planted with few randomly selected plant species. These studies have shown that species-poor plant assemblages function less well and produce less biomass than species rich systems.

Extensive study with about 2,200 species in 450 landscapes

Researchers participating in the University Research Priority Programme "Global Change and Biodiversity" of the University of Zurich now demonstrate similar positive effects of biodiversity in real-world ecosystems in which mechanisms different from the ones in artificial experimental plots are at play. Using 450 different 1-km2 landscapes that spanned the entire area of Switzerland, they investigated the role of the diversity of plant, bird and butterfly species for the production of biomass, which was estimated from satellite data.

Biodiversity is important for the functioning of complex, natural ecosystems

"Our results show that biodiversity plays an essential role for the functioning of extensive natural landscapes that consist of different ecosystem types such as forests, meadows or urban areas", study leader Pascal Niklaus from Department of Evolutionary Biology and Environmental Studies says. The analyses showed that landscapes with a greater biodiversity were more productive and that their productivity showed a lower year-to-year variation.

Biodiversity promoted the adaptation of landscapes

The satellite data analysed by the scientists revealed that the annual growing period increased in length throughout the last 16 years, an effect that can be explained by climate warming. The prolongation in growing season was considerably larger in more biodiverse landscapes. These relations were robust and remained important even when a range of other drivers such as temperature, rainfall, solar irradiation, topography, of the specific composition of the landscapes were considered. "This indicates that landscapes with high biodiversity can adapt better and faster to changing environmental conditions," Niklaus concludes.

Read the paper: Biodiversity promotes primary productivity and growing season lengthening at the landscape scale.

Article source: University of Zurich.

Image credit: University of Zurich

News

Disease-resistant apples perform better than old favorites

You may not find them in the produce aisle yet, but it's only a matter of time before new disease-resistant apple cultivars overtake favorites like Honeycrisp in popularity, according to a University of Illinois apple expert.


Microbiome transplants provide disease resistance in critically endangered Hawaiian plant

Transplanting wild microbes from healthy related plants can make a native Hawaiian plant healthier and likelier to survive in wild according to new research from The Amend Laboratory in the University of Hawai'i at Mānoa (UHM) Botany Department and the O'ahu Army Natural Resources Program (OANRP). Professor Anthony Amend and postdoctoral researcher Geoff Zahn used microbes to restore the health of a critically endangered Hawaiian plant that, until now, had been driven to extinction in the wild and only survived in managed greenhouses under heavy doses of fungicide.


Sun's role in mitigating fungal disease of mango fruit

Mango fruits play host to some economically damaging fungal diseases, especially during ripening and storage; but mango growers and suppliers have a new ray of hope...in the form of sunlight.