GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]

Distant Relatives: TOR Protein Regulates Cell Growth in Plants and Animals

Plant researchers study gene which – if out of control – can contribute to cancer spread

Two such different organisms as plants and humans developed from a common precursor cell. Traces of this over one-billion-year kinship remain anchored in the genetic material of both organisms. An international team of plant researchers led by Dr Markus Wirtz and Prof. Dr Rüdiger Hell of Heidelberg University has looked more closely into one such trace – the TOR protein. In human and animal cells, TOR acts as a signal generator that controls both survival and cell growth. The Heidelberg researchers have now discovered how this protein also functions as a growth regulator in plants.

The TOR protein sets the stage for growth only when there is sufficient sulphate available to nourish the plant. The information on the sulphate content of the soil is transmitted to the cells via sugar but not via amino acids, which are the building blocks of proteins. "This finding can contribute to cultivating nutrient-efficient crops which can then be used in sustainable agriculture," states Prof. Hell.

But knowledge about the TOR protein's regulatory function is important not only for plant researchers. Medical researchers have long been investigating the growth regulator. Whereas TOR is active in healthy human cells only in the presence of sufficient amino acids, an out-of-control TOR protein in cancer cells contributes to rampant tumour proliferation. That is why TOR is a critical target for tumour medications.

In cooperation with researchers from the German Cancer Research Center (DKFZ), the Heidelberg plant researchers proved that despite millions of years of evolution, nothing has really changed about the basic function of TOR as a growth regulator. "Since separation from the common precursor, only the regulation mechanisms of the TOR protein have adapted to the different ways of life of humans and plants," explains Markus Wirtz.

The results of this research were published in the journal “Nature Communications”.

Read the paper: Sulfur availability regulates plant growth via glucose-TOR signaling.

Article source: University of Heidelberg.


Amazon deforestation is close to tipping point

Deforestation of the Amazon is about to reach a threshold beyond which the region's tropical rainforest may undergo irreversible changes that transform the landscape into degraded savanna with sparse shrubby plant cover and low biodiversity.

Palm trees are spreading northward. How far will they go?

What does it take for palm trees, the unofficial trademark of tropical landscapes, to expand into northern parts of the world that have long been too cold for palm trees to survive? A new study, led by Lamont-Doherty Earth Observatory researcher Tammo Reichgelt, attempts to answer this question. He and his colleagues analyzed a broad dataset to determine global palm tree distribution in relation to temperature.

Agriculture initiated by indigenous peoples, not Fertile Crescent migration

Small scale agricultural farming was first initiated by indigenous communities living on Turkey's Anatolian plateau, and not introduced by migrant farmers as previously thought, according to new research by the University of Liverpool.