Login

GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]


Decades of Tree Rings Extend Today's High-Tech Climate Stories

Satellite imagery, carbon dioxide measurements, and computer models all help scientists understand how climate and carbon dynamics are changing in the world’s forests. But the technology powering these high-tech data only stretches back about thirty years, limiting our picture of long-term change.

A new study in Nature Communications co-authored by HF Senior Ecologist Neil Pederson with scientists from Columbia University, ETH Zürich, and elsewhere shows how information revealed by a new method of analyzing tree rings matches the story told by more high-tech equipment over the short-term. Because trees are long-lived, looking back in their rings with this new approach may add decades or even centuries to our understanding of carbon storage and climate change in forests.

To test whether tree rings are a good proxy for satellite and other data, the scientists examined ring samples from two widespread tree species -- tulip poplar (Liriodendron tulipifera) and northern red oak (Quercus rubra) – growing in three climatically different regions of the eastern US.

By analyzing the carbon and oxygen molecules (stable isotopes) stored in the rings, they could compare the trees' own picture of forest productivity to estimates derived from satellites. They found strong agreement each year, and over time.

The tree rings also revealed that the biggest changes in annual forest growth were linked to moisture availability, regardless of climate. "Our method showed that the productivity of a forest can be estimated using information from just five trees," says Laia Andreu Hayles, an Associate Research Professor at the Tree-Ring Laboratory of Columbia University's Lamont-Doherty Earth Observatory, and co-author of the new study. "The stable isotopes measured in tree rings are highly sensitive to tracking moisture."

The team says the full power of this new method would rely on an expanded network of tree ring research. “When we put tree ring data to work in historical climate models, we find that the models are more powerful when more species are included,” says Neil Pederson with scientists from Columbia University,, Harvard Forest Senior Ecologist. “I suspect this might also be the case when we use models to look forward, to future forest productivity and carbon storage.”

Read the paper: Nature Communications

Article source:Harvard University

Image credit: CCO Public domain

News

Rice blast fungus study sheds new light on virulence mechanisms of plant pathogenic fungi

Rice blast fungus (Magnaporthe oryzae) is a global food security threat due to its destruction of cultivated rice, the most widely consumed staple food in the world. Disease containment efforts using traditional breeding or chemical approaches have been unsuccessful as the fungus can rapidly adapt and mutate to develop resistance. Because of this, it is necessary to understand fungal infection-related development to formulate new, effective methods of blast control.


Rare crops crucial to protect Europe’s food supply, boost health

Rye bread or porridge oats may not be everyone’s first choice of breakfast, but scientists say Europeans need to broaden their taste in cereals both to boost their own health and to protect the future of Europe’s farming.


New research accurately predicts Australian wheat yield months before harvest

Topping the list of Australia’s major crops, wheat is grown on more than half the country’s cropland and is a key export commodity. With so much riding on wheat, accurate yield forecasting is necessary to predict regional and global food security and commodity markets. A new study published in Agricultural and Forest Meteorology shows machine-learning methods can accurately predict wheat yield for the country two months before the crop matures.