Login

GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]


Computer models provide new insights for sustainable control of potato late blight

Wageningen University & Research uses computer models to develop sustainable management strategies in the control of potato late blight, caused by Phytophthora infestans. Francine Pacilly has recently receive her PhD on this socially relevant topic. Her research provides important insights for farmers, breeders, potato traders, retailers and governments. Resistant varieties can play an important role in sustainable disease control, but cooperation between stakeholders in the whole potato sector is required.

The impact of late blight

Potato production, which is very important for the Dutch economy, has long been threatened by the aggressive disease. This has major consequences for trade but also for national and international consumption. Moreover, fungicides which are used in disease control have a negative effect on the environment.

Current late blight control

At the moment, large amounts of fungicides are used to control the disease. Organic farmers face an additional challenge because they are not allowed to use these chemicals. From an environmental point of view, these chemicals are also very polluting and therefore sustainable late blight management strategies are needed.

What is needed for the future

The use of disease-resistant potato varieties is important, however, no structural solution has yet been achieved because the pathogen can easily adapt and as a result resistant varieties can get infected. Furthermore, the availability of resistant varieties is still limited, however, more new resistant varieties are entering the market the coming years. Last year organic farmers, breeders and supermarkets signed a covenant to upscale the use of resistant potato varieties the coming three years so that by 2020 the organic segment of potatoes will consist entirely of resistant varieties.

New insights important for breakthrough

In Francine Pacilly 's PhD research, computer models have been used to investigate how the disease spreads in an agricultural landscape and to analyze the effect of growing resistant varieties. These models show that an increase in the number of potato fields with resistant varieties increases the risk that aggressive strains of the pathogen emerge and spread. This risk decreases if more than 50% of the acreage of potato fields consists of resistant varieties. So many resistant potatoes are not yet available so alertness is required. Various strategies are available to limit the consequences of a breakthrough, for example the spatial allocation of crops in combination with the use of small amounts of fungicides to limit the environmental impact. In addition, growing resistant varieties with multiple resistance genes reduces the risk of susceptibility to the potato disease. It is expected that these type of varieties will enter the market soon.

Working with farmers

Last year workshops with farmers were organized to increase awareness about the risk of resistance breakdown. In these workshops, the computer model was used to present several model scenarios to conventional and organic farmers. These workshops were very useful for showing farmers how the disease spreads in a landscape over time and space and for showing the effects in the long term. After the workshop farmers agreed that resistance management is important to increase the durability of resistant varieties and that collaborative action is needed. The workshops were useful to bring farmers together and to discuss strategies in the control of late blight to reduce the impact of the disease.

A system approach

In order to develop sustainable strategies it is important to consider all factors that influence late blight control such as the disease, the crop and control strategies of farmers. This research is part of the Complex Adaptive Systems program of Wageningen University where the goal is to identify these factors and to analyze how they influence each other. Potato late blight as one system brings a future without chemical control closer.

Article source: Wageningen University & Research

Image credit: Wageningen University & Research

News

Plants prove to be efficient antifungal factories

Researchers of the Institute of Plant Molecular and Cellular Biology (IBMCP), a mixed centre of the Valencia Polytechnic University (UPV) and the Spanish National Research Council (CSIC), in collaboration with the Centre of Agrigenomic Research (CRAG) of the CSIC, the government of Catalunya, the Authonomous University of Barcelona and the University of Barcelona; and the Institute of Food Agrochemistry and Technology (IATA) of the CSIC, have been able to efficiently produce antifungal proteins in plants, based on a modified tobacco mosaic virus. The results of this research, which could have a great impact in the agri-food industry, have been published in the Plant Biotechnology Journal.


Nuclear events make a flower bloom

Flowers do more than give plants beautiful lovely colors and fragrances. They are the reproductive organs of the plant. Their formation depends on strict nuclear events that if compromised can leave the plant sterile. A new study by researchers at the Nara Institute of Science and Technology (NAIST) shows how two transcription factors, AGAMOUS and CRABS CLAW, bind sequentially to the gene YUC4, which is responsible for synthesizing the plant hormone auxin. The findings, which can be read in Nature Communications, provide an epigenetic explanation for proper formation of the gynoecium, the female reproductive organ of flowering plants.


Flower power with the family

For centuries, people have conveyed feelings of happiness and love with flowers. Now an EU research team has found that plants flower more when surrounded by relatives compared to when growing with strangers or alone.