Login

GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]


Cassava breeding hasn't improved photosynthesis or yield potential

Cassava is a staple in the diet of more than one billion people across 105 countries, yet this "orphaned crop" has received little attention compared to popular crops like corn and soybeans. While advances in breeding have helped cassava withstand pests and diseases, cassava yields no more today than it did in 1963. Corn yields, by comparison, have more than doubled.

University of Illinois researchers analyzed four African cultivars to find out how breeding has impacted photosynthesis--the process that transforms light energy and carbon dioxide into yield. They found that unimproved landraces of cassava - cultivars that have not been bred for improvements like pest and disease resistance - are actually 20 percent better at photosynthesizing than their improved counterparts, as reported in Food and Energy Security.

This research is part of the international research project Realizing Increased Photosynthetic Efficiency (RIPE) that is supported by the Bill & Melinda Gates Foundation, Foundation for Food and Agriculture Research, and U.K. Department for International Development. The Cassava Source-Sink, or CASS, project generously provided the cassava cultivars.

"Cassava breeders have diligently worked to improve the pest and disease resistance of this crop, which has been absolutely critical," said RIPE Director Stephen Long, Ikenberry Endowed Chair of Plant Biology and Crop Sciences in the Carl R. Woese Institute for Genomic Biology and the College of Agricultural, Consumer and Environmental Sciences. "The next step is to improve cassava yield potential by improving its photosynthetic performance. There is clearly room for improvement of genetic yield potential in cassava through photosynthesis, and we must remember that increased genetic yield potential underpinned successes of the Green Revolution."

Data from this study is being incorporated into a computer model simulation of cassava, enabling the team to virtually tweak and manipulate photosynthesis "in silico" to determine what genetic changes will increase cassava's photosynthetic efficiency and yield.

However, many of the needed changes to improve photosynthesis cannot be achieved through traditional breeding and will require genetically engineering cassava, which has so far been challenging compared to our major grain and seed crops.

"Genetic engineering of cassava is our major hurdle going forward," said RIPE postdoctoral researcher Amanda De Souza, who led this study. "We know it is possible because colleagues working on the Gates Foundation-supported CASS project have been successful with a model cassava cultivar, but this cultivar is so disease-susceptible that it can't survive in the real world. We need to extend this capability to African cultivars that can thrive in the fields of smallholder farmers."

Read the paper: Toward improving photosynthesis in cassava: characterizing photosynthetic limitations in four current African cultivars.

Article source: University of Illinois.

Image credit: Realizing Increased Photosynthetic Efficiency

News

Ecological impact of logging in the Białowieża Forest extends far beyond logged areas

A team of researchers from the Swedish University of Agricultural Sciences, Siedlce University and the Mammal Research Institute Polish Academy of Sciences, has provided a first objective estimate of the extent of logging (since 2015) in the renowned Białowieża Forest. This forest is the last remaining area of lowland temperate forest with a primeval character in Europe and is a UNESCO World Heritage and Natura 2000 site.


Global warming increases wildfire potential damages in Mediterranean Europe

A study published in Nature Communications, led by researchers of the University of Barcelona in collaboration with other research institutions, shows that anthropogenic warming will increase the burned areas due fires in Mediterranean Europe, and the increase of the burned area could be reduced by limiting global warming to 1.5 ºC. The higher the warming level is, the larger the increase of the burned area is.


Genome of Sea Lettuce that Spawns Massive "Green Tides" Decoded

Sea lettuce, a fast-growing seaweed that spawns massive “green tides,” is a prolific thief, according to research that for the first time sequenced the genome of a green seaweed.