GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]

Carnivorous plants: How the waterwheel plant snaps

The midrib of the leaf (which has been transformed into a snap trap) bends slightly downwards in a flash, the trap halves fold in, and the water flea can no longer escape -- as part of an interdisciplinary team Anna Westermeier, Dr. Simon Poppinga and Prof. Dr. Thomas Speck from the Plant Biomechanics Group at the Botanic Garden of the University of Freiburg have discovered how this snapping mechanism, with which the carnivorous waterwheel (Aldrovanda vesiculosa) catches its prey, works in detail. The study was carried out in the Collaborative Research Centre "Biological Design and Integrative Structures: Analysis, Simulation and Implementation in Architecture." In addition to the Freiburg biologists, experts from the Institute of Structural Analysis and Structural Dynamics (IBB) at the University of Stuttgart and from the Institute of Botany at the Czech Academy of Sciences were also involved. The team has published its results in the journal Proceedings of the Royal Society B: Biological Sciences.

The Venus flytrap (Dionaea muscipula) and the far less known aquatic waterwheel are the only carnivorous plants with snap traps. While intensive research on the Venus flytrap has been going on for a long time, the ten times faster underwater snap traps of the waterwheel have so far been little studied. The team led by the Freiburg biologists has now deciphered the underlying movement principle using experiments and computer simulations. The researchers found that the waterwheel snaps shut its trap, which is only three millimetres in size, by actively changing the internal pressure in the cells of the leaf, which leads to the midrib bending, and also by releasing internal prestress, which apparently results in an acceleration effect. The Venus flytrap, on the other hand, employs a hydraulic mechanism to change the curvature of its leaf halves which results in rapid trap closure. Although both plants share many similarities, the mechanics of the traps differ considerably. This finding may not only help understanding the development of snap traps from an evolutionary perspective, but also the adaptation to different habitats -- in a terrestrial habitat with the Venus flytrap, under water with the waterwheel.

The team also published a biomimetic implementation of the waterwheel trap movement principle as part of the Collaborative Research Centre at the beginning of 2018 -- together with other colleagues from the IBB and the Institute for Load-bearing Structures and Structural Design (ITKE) at the University of Stuttgart and the German Institutes for Textile and Fibre Research (DITF). The facade shading Flectofold© shows the same opening and closing movement as its biological inspiration, the waterwheel, and can also be attached to complex building shells.

Read the paper: How the carnivorous waterwheel plant (Aldrovanda vesiculosa) snaps.

Article source: Albert-Ludwigs-Universität Freiburg.

Image credit:
Photo: Plant Biomechanics Group


Wetlands are key for accurate greenhouse gas measurements in the Arctic

The Arctic is rapidly warming, with stronger effects than observed elsewhere in the world. The Arctic regions are particularly important with respect to climate change, as permafrost soils store huge amounts of the Earth's soil carbon (C). Warming of Arctic soils and thawing of permafrost can have substantial consequences for the global climate, as the large C stored in soils could be released to the atmosphere as the greenhouse gases carbon dioxide (CO2) and methane (CH4). The release of these heat-trapping gases, in turn, has the potential to further enhance climate warming.

New approach to conserving tree species

Globally, forest trees are increasingly at risk from habitat destruction, pests and disease, and a changing climate. But the guidelines for effective preservation of a tree species' genetic diversity and adaptive potential have been limited to simple mathematical equations for crop collections from the 1970s, or best guesses based on intuitions.

Multidisciplinary team tackles agricultural threat to global food security

CLEMSON, South Carolina – Weak corn and sorghum stalks cause the loss of about 20 percent of the crops in the U.S. annually, and Rajan Sekhon and Christopher McMahan of Clemson University's College of Science are part of a multi-university consortium trying to find out why.