Login

GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]


Building a morphogen gradient by simple diffusion in a growing plant leaf

In an article published in Biophysical Journal, the team of Associate Professor Kensuke Kawade at the Okazaki Institute for Integrative Bioscience and National Institute for Basic Biology in Japan showed that a transcriptional co-activator ANGUSTIFOLIA3 (AN3) forms a signaling gradient along the leaf proximal-to-distal axis to determine cell-proliferation domain. In particular, by experimental and theoretical approaches, they demonstrated that pure diffusion in a growing tissue is sufficient to explain the AN3 gradient formation. This work provides evidence that the diffusion-based model of morphogen is viable in developmental patterning of multicellular organisms.

Spatial gradient of signaling molecules is critical for establishing developmental patterns of multicellular organisms. Around half a century ago, a seminal work proposed a theory that pure diffusion of signaling molecules from a restricted source may explain the establishment of such tissue-scale gradients (Crick, 1970). Despite the prominence of this diffusion-based model in development, quantitative studies, largely performed in animals, have not yet demonstrated this simple mechanism in multicellular tissues.

Dr. Kawade's team at OIBB/NIBB, in collaboration with scientists in the Institut Jacques Monod (France), Rikkyo University (Japan) and University of Tokyo (Japan), solved a long-standing argument of the diffusion-based model for morphogen gradient formation. They measured molecular transport through plasmodesmata, a unique cellular channel in plants directly connecting neighboring cells, by trans-scale FRAP (Fluorescence Recovery After Photobleaching) assays. This analyses revealed biophysical properties of diffusive molecular transport through plasmodesmata. Based on this diffusion-based framework, they succeeded in demonstrating that the AN3 gradient could be achieved solely by pure diffusion process through plasmodesmata in developing leaf primordia. Because the AN3 signaling gradient corresponds to the cell-proliferation domain, this study can explain how spatial and temporal dynamics of cell proliferation, and therefore tissue growth, is regulated during leaf development.

These discoveries provide a significant step forward in our understanding of how the simple biophysical phenomena 'diffusion' governs developmental patterning in multicellular organisms.

Read the paper: Spatially different tissue-scale diffusivity shapes ANGUSTIFOLIA3 signaling gradient in growing leaves.

Article source: National Institutes of Natural Sciences.

Image credit: National Institute for Basic Biology

News

Harvard forest report: Forests, funding, and conservation in decline across New England

New England has been losing forestland to development at a rate of 65 acres per day, according to a new report released by the Harvard Forest, a research institute of Harvard University, and a team of authors from across the region. Public funding for land protection has also been steadily declining in all six New England states and is now half what it was at its 2008 peak; with land conservation trends following suit.


Plant physiology: Adjusting to fluctuating temperatures

Later leaf emergence, earlier leaf loss: A new study of Ludwig-Maximilians-Universitaet (LMU) in Munich shows that the average vegetation periods of trees and shrubs in North America are intrinsically three weeks shorter than those of comparable species in Europe and Asia.


More mouths can be fed by boosting number of plant pores

Scientists at Institute of Transformative Bio-Molecules (ITbM), Nagoya University have synthesized a new bioactive small molecule that has the ability to increase stomata numbers on flowering plants without stunting their growth. The team’s new discovery could help elucidate the stomatal development mechanism in plants.