Login

GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]


Blue gene regulation helps plants respond properly to light

Researchers at the RIKEN Center for Sustainable Resource Science (CSRS) have discovered a process through which gene expression in plants is regulated by light. Published in Proceedings of the National Academy of Sciences USA, the study found that blue light triggers a shift in which portion of a gene is ultimately expressed.

When a new seedling first emerges from the ground and is exposed to sunlight, in particular, the blue light, it undergoes a series of physiological changes that will allow it to grow and carry out photosynthesis. These changes are possible because blue light triggers the expression of certain genes that are normally silenced in the dark. The CSRS team adapted two new molecular biological techniques for use with plants to reveal how this happens.

Gene expression is a multi-step process. After a gene's DNA is transcribed to RNA, the RNA is read from one end to the other. Areas that are read first are 'upstream' of those that are read later. If a 'start' code is encountered, that region of RNA will be translated into a protein. The trick is that a single gene can contain more than one start code, each one triggering the translation of different portions of the RNA. The team at CSRS lead by Minami Matsui in collaboration with Shintaro Iwasaki at the RIKEN RNA Systems Biochemistry laboratory found that for certain genes, exposure to blue light changes which start code is used, ensuring that the main sequence is translated into protein that can then be used by the plant in light-related processes.

"We found that many mRNA transcription start sites in plants change in the presence of blue light," explains Matsui. "Specifically, they change from the upstream site to the downstream site." The team discovered that when the upstream start code is used, it actually inhibits the use of the downstream start code, and could even lead to the deterioration of the RNA. "Without light, these mRNAs are doomed and unnecessary protein synthesis related to photosynthesis or photomorphogenesis is blocked."

The shift in start code means that when a seedling encounters light for the first time, the RNA remains stable and the light-dependent processes can proceed with proper protein synthesis.

Although this research was aimed at investigating how light-related changes in gene expression occur in plants, Matsui believes that the underlying regulatory process in which start codes are selected based on environmental factors could be widespread and important for animal research as well.

In terms of plants, knowing this process could be beneficial in several ways. "We can devise ways to tightly control the expression of proteins that can damage plants when expressed under improper physiological conditions," notes Matsui. "In the long run, we will be able to more efficiently control plant production of useful proteins and chemicals via synthetic pathways."

Read the paper: Transcripts from downstream alternative transcription start sites evade uORF-mediated inhibition of gene expression in Arabidopsis.

Article source: RIKEN.

Image credit: RIKEN

News

Wetlands are key for accurate greenhouse gas measurements in the Arctic

The Arctic is rapidly warming, with stronger effects than observed elsewhere in the world. The Arctic regions are particularly important with respect to climate change, as permafrost soils store huge amounts of the Earth's soil carbon (C). Warming of Arctic soils and thawing of permafrost can have substantial consequences for the global climate, as the large C stored in soils could be released to the atmosphere as the greenhouse gases carbon dioxide (CO2) and methane (CH4). The release of these heat-trapping gases, in turn, has the potential to further enhance climate warming.


New approach to conserving tree species

Globally, forest trees are increasingly at risk from habitat destruction, pests and disease, and a changing climate. But the guidelines for effective preservation of a tree species' genetic diversity and adaptive potential have been limited to simple mathematical equations for crop collections from the 1970s, or best guesses based on intuitions.


Multidisciplinary team tackles agricultural threat to global food security

CLEMSON, South Carolina – Weak corn and sorghum stalks cause the loss of about 20 percent of the crops in the U.S. annually, and Rajan Sekhon and Christopher McMahan of Clemson University's College of Science are part of a multi-university consortium trying to find out why.