Login

GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]


Biotechnology to the rescue of Brussels sprouts

An international team has identified the genes that make these plants resistant to the pathogen that attacks crops belonging to the cabbage family all over the world.

From Brussels, China or Milan. "Surnames" aside, cabbages are grown nowadays all over the world. Like them, many other plants from the Brassicaceae family such as cauliflower, broccoli, cabbage and even mustard -yes, strange as it may seem and though their tastes are very different, a Brussels sprout and a mustard seed belong to the same family- have a common enemy: white rust, or at least one kind of white rust. Specifically, cabbages are threatened by a disease caused by a pathogen called Albugo candida, which acts exactly like a fungus, though it is not actually a fungus. That is to say, it spreads under the right conditions of humidity and temperature and eats up the nutrients of the plants it attacks.

Brussels sprouts

Though not lethal, the disease is fairly common and can be identified by the appearance of white pustules on the plant’s leaves that change color until they turn brown, damaging the affected part until it is no longer edible. The similarities it shares with fungi has facilitated the use of treatments for white rust being modeled on fungicides. Nevertheless, the need to find long-term solutions in order to curb low harvest yields has the international scientific community hard at work.

Today, the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS) has published the work of a team made up of researchers from eight European universities and research centers headed by Sainsbury Laboratory in Norwich, the U.K. Among these researchers is Amey Redkar, a researcher from the Genetics Department at the University of Cordoba. This research team has been able to identify multiple genes that are resistant to Albugo cándida. These genes are nucleotide-binding leucine-rich repeats (also known as NLR) and they have been identified by means of a plant model commonly used in plant biotechnology laboratories: Arabidopsis thaliana, which allows for extrapolating results to other crops. In fact, identifying these genes that become resistant to white rust allows for designing new genetic improvement strategies for different cultivated plant species.

This is a new accomplishment in basic research with clear biotechnological applications. The research team, to which Amey Redkar belongs and the one University of Cordoba Genetics Professor Antonio Di Pietro heads, specializes in this line of work. Specifically, Redkar is part of the Foundation project, funded by the European Union’s Marie Sklodowska-Curie Actions program. This program aims to study the infection mechanisms of Fusarium oxysporum, an important fungus pathogen that causes vascular wilt in over a hundred crop species, including tomatoes and bananas. In particular, the University of Cordoba team aims to identify new infection mechanisms that will serve as targets in order to reduce the harm caused by this pathogenic species.

Read the paper: PNAS

Article source: Universidad de Cordoba

Image credit: CCO Public domain

News

Large and branched root systems can speed up growth of spruces

According to a study by the Natural Resources Institute Finland (Luke), strong growth rate of spruces can be due to the structure of their root system. A large and branched root system offers a major benefit when competing for water and nutrients, and it can boost the growth of fast-growing spruces when compared to slow-growing ones already from the early stages.


Drying without dying: how resurrection plants survive without water

Aquaphotomics sheds light on how plants control their water structure to survive.


How the humble marigold outsmarts a devastating tomato pest

Scientists have revealed for the first time the natural weapon used by marigolds to protect tomato plants against destructive whiteflies.