Login

GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]


Between the lines: Tree rings hold clues about a river's past

Hydrologists are looking centuries into the past to better understand an increasingly uncertain water future.

By analyzing centuries-old growth rings from trees in the Intermountain West, researchers at Utah State University are extracting data about monthly streamflow trends from periods long before the early 1900s when recorded observations began.

Their findings were published in the Journal of Hydrology and, for the first time, show that monthly streamflow data can be reconstructed from annual tree-ring chronologies -- some of which date back to the 1400s.

"By linking tree rings and flow during the past 100 years when we have recorded observations, we can use trees as a tool for measuring flow long before there were gauges on the rivers," said USU's Dr. James Stagge, a hydrologist and civil engineer who led the research. "Our study takes this one step further and uses different tree species and locations to reconstruct monthly flow, rather than annual flow."

Knowing monthly streamflow, the authors explain, is key to making better-informed decisions about water use and management. In Utah and around the world, populations in arid climates depend on seasonal and often inconsistent water supplies for agriculture and urban use.

"One data point per year gives a very limited picture," said co-author Dr. David Rosenberg, an associate professor of civil and environmental engineering at USU. "Decisions about water management happen much more frequently than just once per year. Water managers have to make decisions every month, every week, sometimes every day."

To fill in the missing monthly data, Stagge and co-authors built a model that reconstructs monthly streamflow for three rivers in Northern Utah. The reconstructions are available to the public at http://www.paleoflow.org and show monthly streamflows dating back to 1605 for the Logan River and as far back as 1400 for the Bear and Weber rivers.

The team used tree-ring chronologies from seven species selected from a range of locations and elevations. Stagge says different tree species at different elevations respond to the changing seasons at different times of the year and in slightly different ways, recording unique parts of the seasonal flow. The model overlaps the tree-ring chronologies and combines annual streamflow information and climate data to arrive at a monthly streamflow estimate.

"Now we can get down into a monthly scale and pick up seasonal patterns within the streamflow," said Stagge. "It's the seasonality that determines drought, how reservoirs fill, and when there are shortages. Now that we have this method, we can start looking at what major droughts over the past 600 years would mean for today's water supply."

Read the paper: Monthly paleostreamflow reconstruction from annual tree-ring chronologies.

Article source: Utah State University.

Image credit: Matt Jensen/USU

News

Using the right plants can reduce indoor pollution and save energy

People in industrialized countries spend more than 80% of their lives indoors, increasingly in air-tight buildings. These structures require less energy for heating, ventilating, and air conditioning, but can be hazardous to human health if particulate matter and potentially toxic gases, including carbon monoxide, ozone, and volatile organic compounds, from sources such as furniture, paints, carpets, and office equipment accumulate. Plants absorb toxins and can improve indoor air quality, but surprisingly little is known about what plants are best for the job and how we can make plants perform better indoor.


Trees are not as 'sound asleep' as you may think

High-precision three-dimensional surveying of 21 different species of trees has revealed a yet unknown cycle of subtle canopy movement during the night. The 'sleep cycles' differed from one species to another. Detection of anomalies in overnight movement could become a future diagnostic tool to reveal stress or disease in crops.


Wood formation model to fuel progress in bioenergy, paper, new applications

A new systems biology model that mimics the process of wood formation allows scientists to predict the effects of switching on and off 21 pathway genes involved in producing lignin, a primary component of wood. The model, built on more than three decades of research led by Vincent Chiang of the Forest Biotechnology Group at North Carolina State University, will speed the process of engineering trees for specific needs in timber, biofuel, pulp, paper and green chemistry applications.