Login

GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]


Bacterial superheroes may save the day for crops

Genetic analyses of a desert bacterium show it could help to improve crop production in arid lands.

The bacterium SA187 has been isolated from the root nodules of an indigenous desert plant that grows in Saudi Arabia. The KAUST team found it has many genes that promote plant growth in stressful environments.

Their finding is part of a KAUST project called DARWIN21, which aims to explore the microbial diversity of desert plants and examine their potential for use in improving agricultural sustainability in drylands and marginal areas.

"We were surprised to find tens of bacteria from completely different taxa that are able to help a variety of plants grow better under abiotic stress conditions," says plant scientist Heribert Hirt.

The UN Food and Agriculture Organization estimates farmers will need to produce 70 percent more food by 2050 to meet the needs of the world's growing population. At the same time, 70 percent of global annual food production is lost due to challenges from various biotic (pathogens, insects, herbivores) and abiotic (drought, heat, cold) factors, explains Hirt.

Crops need to be more stress resistant, but genetic engineering and crop breeding technologies take a long time to develop and they can't immediately serve the people who need food the most: subsistence farmers who eat what they farm. "So we need fast and low-cost solutions that are affordable and accessible to everyone on the planet," says Hirt. The DARWIN21 project aims to find bacteria that can help crops become resistant to the most prominent abiotic stresses that are responsible for 60 percent of the loss in crop productivity, he says.

KAUST researchers treated five-day-old seedlings of a small flowering plant called Arabidopsis thaliana with the bacterium SA187. The plants were then grown in conditions that tested their tolerance to drought, heat and salt stresses. Plants treated with SA187 grew better than those not treated with the bacterium.

Analyses also showed that SA187 can adapt to diverse and harsh environments; colonize plants and modulate their hormone production, thus promoting growth; and produce enzymes that protect the plant against pathogenic bacteria, insects and fungi.

Significantly, the team compared the genome of SA187 with that of other bacteria and found that it could be a new genus that belongs to the Enterobacteriaceae family of bacteria. Further investigations are required, however, to fully characterize its taxonomic position.

The team was able to analyze the bacterium's genome in detail and to assess the likely functions of many of its genes using KAUST's computational pipeline, Automatic Annotation of Microbial/Meta Genomes, says bioinformatician, Intikhab Alam, of the Computational Bioscience Research Center.

Identified genes were added to the INtegrated Database of microbial/meta GenOmes (INDIGO) to provide an easy-to-use platform for biologists to further explore these genes.

Maged Saad, a research scientist with the team, has developed an application that coats plant seeds with the bacteria before they are sown. This gives the bacteria a competitive advantage to establish on the plant before it is exposed to other bacteria in the soil.

Four of Hirt's students are now establishing a nonprofit company to distribute SA187 to poor subsistence farmers in various parts of the world. "We hope that by increasing the harvest of these farmers, they will be able to buy essential tools, such as tractors, to improve their production and make a sustainable living," says Hirt.

Read the paper: Complete genome sequence analysis of Enterobacter sp. SA187, a plant multi-stress tolerance promoting endophytic bacterium.

Article source: KAUST.

Image credit: KAUST

News

Dating the ancient Minoan eruption of Thera using tree rings

New analyses that use tree rings could settle the long-standing debate about when the volcano Thera erupted by resolving discrepancies between archeological and radiocarbon methods of dating the eruption, according to new University of Arizona-led research.


How do plants rest photosynthetic activity at night?

Photosynthesis, the process by which plants generate food, is a powerful piece of molecular machinery that needs sunlight to run. The proteins involved in photosynthesis need to be 'on' when they have the sunlight they need to function, but need to idle, like the engine of a car at a traffic light, in the dark, when photosynthesis is not possible. They do this by a process called 'redox regulation'--the activation and deactivation of proteins via changes in their redox (reduction/oxidation) states. What happens in light is well understood: the ferredoxin-thioredoxin reductase (FTR)/thioredoxin (Trx) pathway is responsible for the reduction process, which activates the photosynthetic pathway. However, scientists have long been in the dark about what happens when light is not available, and how plants reset photosynthetic proteins to be ready to function when light is resumed.


VOX pops cereal challenge

A plant virus with a simple genome promises to help crop scientists understand traits and diseases in wheat and maize more quickly and easily than existing techniques and, as its full potential is tapped, to work across a range of different plant species.