Login

GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]


Auxin drives leaf flattening

Leaves are fundamental light-capturing organs of plants. The vast majority of higher plants utilize leaves as their solar panels to harvest solar energy. A common feature of leaves is their flat blades.

Scientists from the Institute of Genetics and Developmental Biology in Beijing discovered that the classical phytohormone auxin enables leaf blade expansion and leaf flattening.

The flattening of leaves to form broad blades is an important adaptation that maximizes photosynthesis. However, the molecular mechanism underlying this process remains unclear.

A new research led by JIAO Yuling from the Institute of Genetics and Developmental Biology of the Chinese Academy of Sciences (CAS), shows that spatial auxin signaling defines the expression of two redundant genes WOX1 and PRS, which enables leaf blade expansion and flattening.

Following their previous report on the auxin regulation of leaf polarity patterning, the researchers further found that auxin and auxin response factors (ARFs) have limited overlaps, which refines auxin signaling in the middle domain of leaf primordium.

Furthermore, they found that MP/ARF5, an ARF activator directly activates the expression of WOX1 and PRS, which promote the marginal meristem and enable leaf flattening. On the other hand, ARF repressors expressed in the abaxial (ventral) domain inhibit WOX1 and PRS expression.

"The new findings in this work explain how adaxial-abaxial (dorsal-ventral) polarity patterns the mediolateral axis and subsequent lateral expansion of leaves", said Dr. JIAO Yuling.

He also mentioned that other recent research of their group described auxin regulation of leaf development at the biomechanical level.

"Finding how leaves get flattened will be necessary to maintain and enhance yield in cultivated plants and crops" said JIAO.

This study entitled "Spatial auxin signaling controls leaf flattening in Arabidopsis" has been published online in Current Biology.

Read the paper: Spatial Auxin Signaling Controls Leaf Flattening in Arabidopsis.

Article source: Chinese Academy of Sciences.

Image credit: Institute of Genetics and Developmental Biology

News

Plant mothers 'talk' to their embryos via the hormone auxin

While pregnancy in humans and seed development in plants look very different, parallels exist -- not least that the embryo develops in close connection with the mother. In animals, a whole network of signals from the mother is known to influence embryo development. In plants, it has been clear for a while that maternal signals regulate embryo development. However, the signal itself was unknown -- until now. Plant scientists at the Institute of Science and Technology Austria (IST Austria), Central European Institute of Technology (CEITEC) and the University of Freiburg have now found that a plant hormone, called auxin, from the mother is one of the signals that pattern the plant embryo. Their study is published in Nature Plants.


Archaeologists discover bread that predates agriculture by 4,000 years

At an archaeological site in northeastern Jordan, researchers have discovered the charred remains of a flatbread baked by hunter-gatherers 14,400 years ago. It is the oldest direct evidence of bread found to date, predating the advent of agriculture by at least 4,000 years. The findings suggest that bread production based on wild cereals may have encouraged hunter-gatherers to cultivate cereals, and thus contributed to the agricultural revolution in the Neolithic period.


Climate change-induced march of treelines halted by unsuitable soils

New research from the University of Guelph is dispelling a commonly held assumption about climate change and its impact on forests in Canada and abroad.