Login


Ancient fungi could help Canada's future northern forests

As Canada's vast boreal and tundra ecosystems experience dramatic warming due to climate change, trees are rapidly spreading north. New research from University of British Columbia's Okanagan Campus suggests some of these trees could be getting help from a surprising source: fungi that have lain dormant underground for thousands of years.

"The idea that long-dormant, symbiotic fungi could help trees migrate during periods of rapid climate change has been around for decades, but no one had taken it seriously enough to investigate," says the study's co-author Jason Pither, associate professor of biology at UBC Okanagan. "Could fungi actually remain dormant and viable for thousands of years and be resurrected by plants growing today? Our research suggests it's possible."

In collaboration with Brian Pickles, a former UBC postdoctoral researcher now lecturer at the University of Reading in the UK, Pither sifted through research from around the world and across many different disciplines. They found that all the key ingredients to allow this to happen were there.

For example, some common types of fungi produce spores with characteristics that should allow them to survive over extremely long periods of time, especially in cold environments, such as those found in Canada's vast permafrost regions.

While it may seem farfetched to some, Pither says this "paleosymbiosis hypothesis" deserves serious consideration. If upheld, the implications could be significant.

"Fungi that were active and successful during past climate conditions could help Canada's forests withstand the stresses of modern climate change."

Read the paper: The paleosymbiosis hypothesis: host plants can be colonised by root symbionts that have been inactive for centuries to millenia.

Article source: University of British Columbia Okanagan.

Image credit: UBC Okanagan

News

How gene silencing works in plants

The group of Myriam Calonje Macaya from the Institute of Plant Biochemistry and Photosynthesis (IBVF), a mixed centre from the University of Seville and the Spanish National Research Council (CSIS), in collaboration with the group of Franziska Turck from the Max Planck Institute for Plant Breeding Research from Cologne, have recently published a study in Genome Biology that means an advance in the knowledge of epigenetic regulation by means of Polycomb-group proteins in plants.


Symbiosis: Butter for my honey

Textbooks tell us that, in arbuscular mycorrhizal symbioses, the host plant supplies its fungal symbionts solely with sugars, in return for inorganic nutrients. New findings by Ludwig-Maximilians-Universitaet (LMU) in Munich researchers now show that lipids are also on the menu.


Researchers find corn gene conferring resistance to multiple plant leaf diseases

Researchers at North Carolina State University have found a specific gene in corn that appears to be associated with resistance to two and possibly three different plant leaf diseases.