Login

GPC Members Login
If you have any problems or have forgotten your login please contact [email protected]


A genetic trigger adds branches to plants, could boost crop yields

When it comes to agriculture from branched plants, such as apple trees, the more branches that bear fruit, the better. But in the real world, there's a limit to the number of branches that plants make -- a gene tends to put the brakes on this splitting process called shoot branching. In ACS Central Science, researchers reveal a chemical that can reverse this limitation, possibly leading to improved crop production.

Previous studies of a plant hormone that inhibits shoot branching resulted in the identification of a regulator gene called D14. Shinya Hagihara, Yuichiro Tsuchiya and colleagues reasoned that if they could inhibit this regulator, they could do the opposite and increase branching. Tsuchiya and Hagihara's teams developed a screen in which they could monitor the shoot branching activity based on whether a reporter chemical called Yoshimulactone Green (YLG) glowed green. By screening a library of 800 compounds, the researchers found that 18 of them inhibited D14 by 70 percent or more. Of these, one called DL1 was particularly active and specific. This inhibitor could increase shoot branching in both a type of flower and in rice. In preparation for DL1's use as a potential commercial agrochemical, the team is now testing how long the chemicals last in the soil and are investigating whether it is toxic to humans.

Read the paper: Discovery of Shoot Branching Regulator Targeting Strigolactone Receptor DWARF14.

Article source: American Chemical Society.

Image credit: American Chemical Society

News

A small number of crops are dominating globally. And that’s bad news for sustainable agriculture

A new University of Toronto study suggests that globally we're growing more of the same kinds of crops, and this presents major challenges for agricultural sustainability on a global scale.


How plants cope with iron deficiency

Iron is an essential nutrient for plants, animals and also for humans. It is needed for a diverse range of metabolic processes, for example for photosynthesis and for respiration. If a person is lacking iron, this leads to a major negative impact on health. Millions of people around the globe suffer from iron deficiency each year. Iron enters the human food chain through plants, either directly or indirectly. Although there are large quantities of iron in the soil in principle, plants may become iron-deficient because of the specific composition of the soil. Additionally, a plant's iron requirements vary throughout its development depending on external circumstances.


Biotechnology to the rescue of Brussels sprouts

An international team has identified the genes that make these plants resistant to the pathogen that attacks crops belonging to the cabbage family all over the world.